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The results of a theoretical treatment are presented for the slow flow of a viscous 
fluid through a circular cylinder within which a small spherical particle is con- 
fined. The sphere is situated in an arbitrary position within the cylinder, rotates 
with an arbitrary constant angular velocity and moves at  constant velocity paral- 
lel to the wall. Approximate expressions are presented which give the frictional 
force, torque, and permanent pressure drop caused by the presence of this ob- 
stacle in the original Poiseuillian field of flow. 

An eccentricity function for the torque on a sphere in a circular cylinder was 
evaluated numerically. It can be used to predict the wall-effect for the torque 
as well as the angular velocity with which a ‘dense’ spherical particle will rotate. 
Expressions are presented which predict the angular velocity of ‘dense ’ as well 
as neutrally buoyant hydrodynamically supported spherical particles. 

1. Introduction 
The behaviour of particles of approximately spherical shape suspended in 

fluids is of fundamental importance in problems involving sedimentation, packed 
beds, fluidization, hindered settling and suspension viscosity. As a preliminary 
to understanding the behaviour of multiparticle systems, we consider here the 
dynamics of a single particle. 

Employing the method of reflexions, Brenner & Happel (1958) and Happel & 
Brenner (1957, 1965) considered the case of the slow translation of a single 
spherical particle which is kept from rotating as it moves parallel to the longitu- 
dinal axis of an infinitely long circular cylinder through which a viscous fluid 
may be flowing. Expressions for the frictional force, torque, and pressure drop 
are developed which are accurate for small a/R, (first-order corrections). We 
shall extend the problem treated by Brenner & Happel (1958) to the more general 
case where the sphere may also rotate with an arbitrary constant angular velocity 
as it slowly translates parallel to the longitudinal axis of an infinitely long circular 
cylinder. Second-order corrections will be developed by utilizing the entire 
velocity field reflected from the sphere. 

Happel & Brenner (1965) have recently reviewed the literature on this subject. 
Detailed derivation of the expressions appearing in this paper are presented in 
Greenstein’s (1967) thesis. 
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2. Description of the problem 
Let us consider the slow translation and rotation of a spherical particle moving 

with an arbitrary constant translational velocity and rotating with an arbitrary 
constant angular velocity through a viscous incompressible fluid confined within 
an infinitely long circular cylindrical tube. The sphere moves with an arbitrary 
constant translational velocity, U, relative to the cylinder wall in the direction 

2-direction 

- Radius u 

FIGURE 1. Motion of sphere and fluid in a circular cylindrical tube. 

of Z positive, parallel to the cylinder axis, and rotates with an arbitrary constant 
angular velocity, S?, = ifiZ,+ jQ,+ kQ,, relative to the cylinder wall, while the 
fluid flows in laminar flow with a superficial velocity of +U, in the positive Z -  
direction. The sphere radius is a, the cylinder radius is R,, and the centre of the 
sphere is situated at a distance b from the cylinder axis in the i-direction, as 
shown in figure 1. 

It is assumed that the fluid motion is governed by the creeping motion and 

1 

P 

continuity equations 
vzv = - v p ,  w.v = 0. (2.1,2.2) 
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V is the fluid velocity with respect to a co-ordinate system which moves with the 
sphere, p is the dynamic pressure and p the fluid viscosity. In  terms of a co- 
ordinate system which moves with the sphere the boundary conditions which 
define the fluid velocity field V are: (i) at  fluid-solid interfaces there is no relative 
motion; (ii) at large distances from the disturbing influence of the sphere, z = t co, 
the velocity distribution becomes Poiseuillian. 

The above boundary-value problem can be solved by a technique of successive 
approximations known as the method of reflexions (see Happel & Brenner 
1965). Since the equations of motion and boundary conditions are linear, the 
frictional force F and torque T (about the sphere centre) exerted on the sphere 
by the fluid, and the additional pressure drop APs (above that due to the original 
Poiseuillian field, AP,) experienced by the fluid during its passage through the 
cylinder as a result of the presence of the sphere, may be obtained by summing 
the respective contributions of each of the individual fields: 

i = O  

m 
AP, = Z A P i .  

i= 1 

(2.3) 

3. Final results for off-centre sphere 
If the results for each of the individual six fields are added in accordance with 

(2.3)-( 2 . 5 )  we obtain the following expressions for the frictional force and torque 
experienced by the sphere and the pressure drop experienced by the fluid as a 
result of the presence of the sphere. For brevity we have set /3 = b/R,. 

+ 2u O (y) R, + o(&)~.  

I 
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AP, = (APl+AP2)+(AP3+AP,)+(AP5+AP,)+ ... 
T.  Greenstein and J .  Happel 

(3.3) 

A form of the preceding equations suitable for examining situations in which the 
sphere is near the container walls can be obtained by expressing the previous 
results in terms of the ratio of the sphere radius to minimum distance (of the 

0.9 1 *o 
P 

FIGURE 2. Eccentricity function for the torque on a sphere in a circular cylinder. 

sphere centre) from the wall, a/ (Ro-b) .  This is done by replacing a/R, by 
[l - (b/R,)] [a/(&- b ) ] .  Although we can continue the reflexion process indefi- 
nitely, it is meaningless to continue beyond the sixth reflexion since the contribu- 
tion of succeeding terms is of the same or larger order than those which we have 
neglected in the approximation. 

The functions f(P) and g(p)  have been previously defined (Brenner & Happel 
1958). The function f(P) has been evaluated numerically by Famularo (1962) 
and the results tabulated in table 1 of his thesis (pp. 62-3) and in Happel & 
Brenner (1965, p. 309). In  order to facilitate interpolation Greenstein (1967) 
recalculated the functionf(B). Values off(/?) and (1 - P)f(P) as. p are presented in 
table 1; additional values off(j3) appear here which have not been reported pre- 
viously. Furthermore, the values off (p) when p 2 0.60 reported previously are 
not correct to  the number of significant figures previously reported. 

The function g(p) has been evaluated numerically, by Greenstein (1967)) for 
various values of the parameter (p), and the results obtained are tabulated in 
table 2. A plot of the function (1 - /3 )2g(p)  us. p is presented in figure 2. 

Various particular cases may be derived from our work by making the follow- 
ing substitutions. When the sphere is kept from rotating, set fil = fi2 = Q3 = 0. 
When the sphere is kept from translating, set U = 0. When the fluid is quiescent, 
set U, = 0. 
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For a freely suspended sphere the resultant of the upward frictional force and 
downward gravity force is zero, i.e. 

F = kW. (3.4) 

Now, w = +7~3(Ps-P)g ,  (3.5) 

P 
0.00 
0.01 
0.02 
0.03 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.37 
0.39 

f (P)  
2.10444 
2.10433 
2.10415 
2.10381 
2.10270 
2.09758 
2.08962 
2.07937 
2.06801 
2.05687 
2.04800 
2.04561 
2.04419 

(1 -PI f (P)  
2.10444 
2.0 8 3 2 9 
2.06207 
2.04069 
1.99756 
1.88783 
1.77618 
1436350 
1.55101 
1.43981 
1-33120 
1.28874 
1.24695 

P 
0-40 
0.41 
0.43 
0.45 
0.50 
0.55 
0.60 
0-65 
0.70 
0.75 
0.80 
0.85 
0.90 

f (P)  
2.0 4 3 8 8 
2-04391 
2-04522 
2.04819 
2.06557 
2.10274 
2.16980 
2.28060 
2.45850 
2.742 
3-20 
3.96 
5.30 

TABLE 1. Tabulation off (P)  and (1 -P)f (P)  w. P 

(1-P)f (P)  
1.22633 
1.20591 
1.16577 
1.12651 
1.03278 
0.946233 
0.867920 
0.798210 
0.737550 
0.6855 
0.640 
0.594 
0.530 

B 
0.00 
0.01 
0-02 
0.03 
0.04 
0.05 
0.08 
0.10 
0.15 
0.20 
0.25 
0.27 
0.29 
0.30 
0.3 1 

s(P) 
0 
0.0129614 
0-0259183 
0.0388690 
0.051 8074 
0.0647301 
0.1033672 
0.128974 
0.192253 
0-254081 
0.313972 
0-33727 
0.360192 
0.371474 
0,382645 

(1-P)2s(P) 
0 
0.0127035 
0.024891 9 
0.0365718 
0.0477457 
0.0584190 
0*0874900 
0.104469 
0.138903 
0.162612 
0.176609 
0.17973 
0.181573 
0.182022 
0.182177 

P 
0.32 
0.33 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 

s(P) 
0.393691 
0.404624 
0.426101 
0.477443 
0.525110 
0.568742 
0.60823 
044376 
0.67574 
0.7059 
0.7378 
0.7802 
0.857 
1.03 

TABLE 2. Values of eccentricity function g(P) 

(1 -P)”(P) 
0.182042 
0.181635 
0.180027 
0.171879 
0.158846 
0.142185 
0.123 16 
0.10300 
0.082778 
0.06354 
0.0461 1 
0.03121 
0.0193 
0.0103 

where ps and p are the densities of particle and fluid, respectively, and g is the 
magnitude of the local acceleration of gravity. Solving (3.1) for [ U - Uo( 1 -,@)I, 
we obtain 

u-uo(l-p2) = 
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Since the sphere is free to rotate the resultant torque acting on it should vanish, 
i.e. To = 0. Setting To = 0 in (3.2) and solving for aa1 ,  a.Q2 and ail3, we obtain 

ual = 0, 

USZ, = 0. 

Substituting the value of [U - Uo( 1 -P2) ] ,  given by (3.6), into the above equation, 
we obtain 

For a neutrally buoyant particle ( W = 0) the above equation takes the form 

while (3.6) reduces to 

(3.9) 

(3.10) 

It has been shown that in the Stokes (low Reynolds number) approximation 
a freely suspended particle placed in a verticaZ Poiseuille flow will not experience 
any sideways force, and so should not migrate. This will be true even in the pres- 
ence of a buoyancy force. Hence the dynamical reason for the observations of 
rapid radial migration (Jeffrey & Pearson 1965) must be found in non-linear 
effects. 
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